ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
  а) 2100 ходов;
  б) 2000 ходов?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]      



Задача 64852

Темы:   [ Целочисленные решетки (прочее) ]
[ Теория алгоритмов ]
Сложность: 5-
Классы: 8,9,10

Паутина имеет вид клетчатой сетки 100×100 узлов (другими словами, это сетка 99×99 клеток). В каком-то её углу сидит паук, а в некоторых 100 узлах к паутине приклеились мухи. За ход паук может переместиться в любой соседний с ним узел. Может ли паук гарантированно съесть всех мух, затратив не более
  а) 2100 ходов;
  б) 2000 ходов?

Прислать комментарий     Решение

Задача 64857

Темы:   [ Теория игр (прочее) ]
[ Индукция (прочее) ]
Сложность: 5
Классы: 9,10,11

  В некотором государстве ценятся золотой и платиновый песок. Золото можно менять на платину, а платину на золото по курсу, который определяется натуральными числами g и p так: x граммов золотого песка равноценны y граммам платинового, если  xp = yg  (числа x и y могут быть нецелыми). Сейчас у банкира есть по килограмму золотого и платинового песка, а  g = p = 1001.  Государство обещает каждый день уменьшать одно из чисел g и p на единицу, так что через 2000 дней они оба станут единицами; но последовательность уменьшений неизвестна. Может ли банкир каждый день менять песок так, чтобы в конце гарантированно получить хотя бы по 2 кг каждого песка?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .