ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числовая функция  f такова, что для любых x и y выполняется равенство  f(x + y) = f(x) + f(y) + 80xy.  Найдите  f(1), если  f(0,25) = 2.

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 7843]      



Задача 64834

Тема:   [ Иррациональные неравенства ]
Сложность: 2+
Классы: 8,9,10

Существует ли такое x, что    ?

Прислать комментарий     Решение

Задача 64889

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 10,11

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Прислать комментарий     Решение

Задача 64891

Тема:   [ Функции. Непрерывность (прочее) ]
Сложность: 2+
Классы: 10,11

Числовая функция  f такова, что для любых x и y выполняется равенство  f(x + y) = f(x) + f(y) + 80xy.  Найдите  f(1), если  f(0,25) = 2.

Прислать комментарий     Решение

Задача 64927

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 5,6

К некоторому числу прибавили его сумму цифр и получили 2014. Приведите пример такого числа.

Прислать комментарий     Решение

Задача 64942

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

Графики трёх функций  y = ax + a,  y = bx + b  и  y = cx + d  имеют общую точку, причём  a ≠ b.  Обязательно ли  c = d?

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 7843]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .