ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?

   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 65129  (#11.6)

Темы:   [ Касающиеся сферы ]
[ Проектирование помогает решить задачу ]
[ Неопределено ]
Сложность: 4-
Классы: 11

Есть полусферическая ваза, закрытая плоской крышкой. В вазе лежат четыре одинаковых апельсина, касаясь вазы, и один грейпфрут, касающийся всех четырёх апельсинов. Верно ли, что все четыре точки касания грейпфрута с апельсинами обязательно лежат в одной плоскости? (Все фрукты являются шарами.)

Прислать комментарий     Решение

Задача 65130  (#11.7)

Темы:   [ Системы линейных уравнений ]
[ Доказательство от противного ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

По кругу расставлено 300 положительных чисел. Могло ли случиться так, что каждое из этих чисел, кроме одного, равно разности своих соседей?

Прислать комментарий     Решение

Задача 65125  (#11.8)

Темы:   [ Числовые последовательности (прочее) ]
[ Задачи с ограничениями ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 11

Петя хочет выписать все возможные последовательности из 100 натуральных чисел, в каждой из которых хотя бы раз встречается число 4 или 5, а любые два соседних члена различаются не больше, чем на 2. Сколько последовательностей ему придётся выписать?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .