ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Вниз   Решение


Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?

ВверхВниз   Решение


Дан квадратный лист клетчатой бумаги размером 100×100 клеток. Проведено несколько несамопересекающихся ломаных, идущих по сторонам клеток и не имеющих общих точек. Эти ломаные идут строго внутри квадрата, а концами обязательно выходят на границу. Докажите, что кроме вершин квадрата найдется еще узел (внутри квадрата или на границе), не принадлежащий ни одной ломаной.

ВверхВниз   Решение


Шесть равносторонних треугольников расположены, как на рисунке.
Докажите, что сумма площадей заштрихованных треугольников равна сумме площадей закрашенных треугольников.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 65417  (#6)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 9,10,11

Шесть равносторонних треугольников расположены, как на рисунке.
Докажите, что сумма площадей заштрихованных треугольников равна сумме площадей закрашенных треугольников.

Прислать комментарий     Решение

Задача 65418  (#7)

Темы:   [ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Разложение на множители ]
Сложность: 3
Классы: 9,10,11

Первый член бесконечной арифметической прогрессии из натуральных чисел равен 1.
Докажите, что среди её членов можно найти 2015 последовательных членов геометрической прогрессии.

Прислать комментарий     Решение

Задача 65419  (#8)

Темы:   [ Математическая логика (прочее) ]
[ Средние величины ]
Сложность: 4-
Классы: 9,10,11

В зоопарке жили 200 попугаев. Однажды они по очереди сделали по одному заявлению. Начиная со второго, все заявления были "Среди сделанных ранее заявлений ложных – более 70%". Сколько всего ложных заявлений сделали попугаи?

Прислать комментарий     Решение

Задача 65420  (#9)

Темы:   [ Правильный тетраэдр ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Разрежьте правильный тетраэдр на равные многогранники с шестью гранями.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .