ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 65169  (#9.1.1)

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

На рисунке изображен график функции  y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А.

Прислать комментарий     Решение

Задача 65170  (#9.1.2)

Темы:   [ Четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 8,9,10,11

Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

Прислать комментарий     Решение

Задача 65421  (#9.1.3)

Темы:   [ Процессы и операции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 8,9,10,11

Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

Прислать комментарий     Решение

Задача 65422  (#9.2.1)

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 3
Классы: 9,10,11

Решите систему уравнений:
  1/x = y + z,
  1/y = z + x,
  1/z = x + y.

Прислать комментарий     Решение

Задача 65423  (#9.2.2)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что  DE || АC,  DF || BС.
Найдите угол между прямыми и BF.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .