ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 65424  (#9.2.3)

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

На доске записаны числа 20 и 100. Разрешается дописать на доску произведение любых двух имеющихся на ней чисел. Можно ли такими операциями когда-нибудь получить на доске число 50...0 (2015 нулей)?

Прислать комментарий     Решение

Задача 65425  (#9.3.1)

Темы:   [ Системы линейных уравнений ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

Сумма трёх различных чисел равна 10, а разность между наибольшим и наименьшим равна 3.
Какие значения может принимать число, среднее по величине?

Прислать комментарий     Решение

Задача 65426  (#9.3.2)

Темы:   [ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Внутри параллелограмма ABCD выбрана точка Р так, что  ∠АРВ + ∠СРD = 180°.  Докажите, что  ∠РВC = ∠РDC.

Прислать комментарий     Решение

Задача 65427  (#9.3.3)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9,10,11

Каких натуральных чисел от 1 до 1000000 (включительно) больше: чётных с нечётной суммой цифр или нечётных с чётной суммой цифр?

Прислать комментарий     Решение

Задача 65428  (#9.4.1)

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10,11

Сумма неотрицательных чисел x1, x2, ..., x10 равна 1. Найдите наибольшее возможное значение суммы  x1x2 + x2x3 + ... + x9x10.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .