ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Покажите, как разрезать фигуру, изображённую на рисунке слева, на две равные части и сложить из этих частей фигуру, изображённую на рисунке справа.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 65522

Темы:   [ Корни высших показателей (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Существует ли такое натуральное число n, большее 1, что значение выражения    является натуральным числом?

Прислать комментарий     Решение

Задача 65492

Тема:   [ Четность и нечетность ]
Сложность: 3+
Классы: 5,6

На пяти карточках записаны натуральные числа от 1 до 5. Леша и Дима взяли себе, не глядя, по две карточки, а оставшуюся карточку, также не глядя, спрятали. Изучив свои карточки, Леша сказал Диме: "Я знаю, что сумма чисел на твоих карточках чётна!"; и был прав. Какие числа записаны на Лешиных карточках?

Прислать комментарий     Решение

Задача 65493

Темы:   [ Обыкновенные дроби ]
[ Квадратные уравнения. Формула корней ]
Сложность: 3+
Классы: 5,6,7

Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$
Прислать комментарий     Решение


Задача 65494

Темы:   [ Текстовые задачи (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 5,6,7

Из 101 далматинца у 29 пятно только на левом ухе, у 17 – только на правом ухе, а у 22 далматинцев нет пятен на ушах.
Сколько далматинцев имеют пятно на правом ухе?

Прислать комментарий     Решение

Задача 65495

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 5,6,7

Покажите, как разрезать фигуру, изображённую на рисунке слева, на две равные части и сложить из этих частей фигуру, изображённую на рисунке справа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .