Страница:
<< 1 2
3 >> [Всего задач: 15]
Задача
115357
(#10.2.3)
|
|
Сложность: 3+ Классы: 7,8,9
|
Девять лыжников ушли со старта по очереди и прошли дистанцию – каждый со своей постоянной скоростью. Могло ли оказаться, что каждый лыжник участвовал ровно в четырёх обгонах? (В каждом обгоне участвуют ровно два лыжника – тот, кто обгоняет, и тот, кого обгоняют.)
Задача
65614
(#10.3.1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такая функция f(x), определённая для всех действительных чисел, что f(sin x) + f(cos x) = sin x?
Задача
65615
(#10.3.2)
|
|
Сложность: 4- Классы: 9,10,11
|
Параллелограмм и квадрат расположены так, что вершины квадрата лежат на сторонах параллелограмма (по одной вершине на каждой стороне). Из каждой вершины параллелограмма проведена прямая, перпендикулярная ближайшей стороне квадрата. Докажите, что точки попарного пересечения этих прямых
также являются вершинами квадрата.
Задача
65616
(#10.3.3)
|
|
Сложность: 3+ Классы: 9,10,11
|
Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?
Задача
65617
(#10.4.1)
|
|
Сложность: 4- Классы: 9,10,11
|
Числа а, b и с лежат в интервале (0, 1). Докажите, что a + b + c + 2abc > ab + bc + ca + 2.
Страница:
<< 1 2
3 >> [Всего задач: 15]