ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 188]      



Задача 65443

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 6,7,8

Юра записал четырёхзначное число. Лёня прибавил к первой цифре этого числа 1, ко второй 2, к третьей 3 и к четвёртой 4, а потом перемножил полученные суммы. У Лёни получилось 234. Какое число могло быть записано Юрой?

Прислать комментарий     Решение

Задача 65623

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3
Классы: 5,6,7

Автор: Фольклор

У Винни-Пуха пять друзей, у каждого из которых в домике есть горшочки с медом: у Тигры – 1, у Пятачка – 2, у Совы – 3, у Иа-Иа – 4, у Кролика – 5. Винни-Пух по очереди приходит в гости к каждому другу, съедает один горшочек меда, а остальные забирает с собой. К последнему домику он подошёл, неся 10 горшочков с медом. Чей домик Пух мог посетить первым?

Прислать комментарий     Решение

Задача 65624

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 5,6,7

Есть четыре карточки с цифрами: 2, 0, 1, 6. Для каждого из чисел от 1 до 9 можно из этих карточек составить четырёхзначное число, которое кратно выбранному однозначному. А в каком году такое будет в следующий раз?

Прислать комментарий     Решение

Задача 65632

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

Мальвина велела Буратино разрезать квадрат на 7 прямоугольников (необязательно различных), у каждого из которых одна сторона в два раза больше другой. Выполнимо ли это задание?

Прислать комментарий     Решение

Задача 66059

Темы:   [ Текстовые задачи (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 6,7

Саша и Ваня родились 19 марта. Каждый из них отмечает свой день рождения тортом со свечками по количеству исполнившихся ему лет. В тот год, когда они познакомились, у Саши на торте было столько же свечек, сколько у Вани сегодня. Известно, что суммарное количество свечек на четырёх тортах Вани и Саши (тогда и сегодня) равно 216. Сколько лет исполнилось Ване сегодня?

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 188]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .