ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



Задача 65724

Темы:   [ Куб ]
[ Свойства сечений ]
[ Сферы (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

Прислать комментарий     Решение

Задача 65728

Темы:   [ Принцип Дирихле (прочее) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9

Художник-абстракционист взял деревянный куб 5×5×5, разбил каждую грань на единичные квадраты и окрасил каждый из них в один из трёх цветов – чёрный, белый или красный – так, что нет соседних по стороне квадратов одного цвета. Какое наименьшее число чёрных квадратов могло при этом получиться? (Квадраты, имеющие общую сторону, считаются соседними и в случае, когда они лежат на разных гранях куба.)

Прислать комментарий     Решение

Задача 65730

Темы:   [ Касающиеся окружности ]
[ ГМТ - прямая или отрезок ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?

Прислать комментарий     Решение

Задача 65457

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Средние величины ]
[ Правило произведения ]
Сложность: 4
Классы: 8,9,10,11

В стране 100 городов, между каждыми двумя городами осуществляется беспосадочный перелёт. Все рейсы платные и стоят положительное (возможно, нецелое) число тугриков. Для любой пары городов А и Б перелёт из А в Б стоит столько же, сколько перелёт из Б в А. Средняя стоимость перелёта равна 1 тугрику. Путешественник хочет облететь какие-нибудь m разных городов за m перелётов, начав и закончив в своём родном городе. Всегда ли ему удастся совершить такое путешествие, потратив на билеты не более m тугриков, если
  а)  m = 99;
  б)  m = 100?

Прислать комментарий     Решение

Задача 65464

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .