ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 65720  (#1)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный.

Прислать комментарий     Решение

Задача 65717  (#2)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фольклор

Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?

Прислать комментарий     Решение

Задача 65718  (#3)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В квадрате 10×10 все клетки левого верхнего квадрата 5×5 закрашены чёрным цветом, а остальные клетки – белым. На какое наибольшее количество многоугольников можно разрезать (по границам клеток) этот квадрат так, чтобы в каждом многоугольнике чёрных клеток было в три раза меньше, чем белых? (Многоугольники не обязаны быть равными или даже равновеликими.)
Прислать комментарий     Решение


Задача 65723  (#4)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 9,10,11

Фирма записала свои расходы в рублях по 100 статьям бюджета, получив список из 100 чисел (у каждого числа не более двух знаков после запятой). Каждый счетовод взял копию списка и нашёл приближённую сумму расходов, действуя следующим образом. Вначале он произвольно выбрал из списка два числа, сложил их, отбросил у суммы знаки после запятой (если они были) и записал результат вместо выбранных двух чисел. С полученным списком из 99 чисел он проделал то же самое, и так далее, пока в списке не осталось одно целое число. Оказалось, что в итоге все счетоводы получили разные результаты. Какое наибольшее число счетоводов могло работать в фирме?

Прислать комментарий     Решение

Задача 65724  (#5)

Темы:   [ Куб ]
[ Свойства сечений ]
[ Сферы (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .