Страница: 1 [Всего задач: 5]
Задача
65720
(#1)
|
|
Сложность: 3+ Классы: 9,10,11
|
Точку внутри выпуклого четырёхугольника соединили со всеми вершинами и с четырьмя точками на сторонах (по одной на стороне). Четырёхугольник оказался разделён на восемь треугольников с одинаковыми радиусами описанных окружностей. Докажите, что исходный четырёхугольник вписанный.
Задача
65717
(#2)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?
Задача
65718
(#3)
|
|
Сложность: 3+ Классы: 7,8,9
|
В квадрате 10×10 все клетки левого верхнего квадрата 5×5 закрашены чёрным цветом, а остальные клетки – белым. На какое наибольшее количество многоугольников можно разрезать (по границам клеток) этот квадрат так, чтобы в каждом многоугольнике чёрных клеток было в три раза меньше, чем белых? (Многоугольники не обязаны быть равными или даже равновеликими.)
Задача
65723
(#4)
|
|
Сложность: 4- Классы: 9,10,11
|
Фирма записала свои расходы в рублях по 100 статьям бюджета, получив список из 100 чисел (у каждого числа не более двух знаков после запятой). Каждый счетовод взял копию списка и нашёл приближённую сумму расходов, действуя следующим образом. Вначале он произвольно выбрал из списка два числа, сложил их, отбросил у суммы знаки после запятой (если они были) и записал результат вместо выбранных двух чисел. С полученным списком из 99 чисел он проделал то же самое, и так далее, пока в списке не осталось одно целое число. Оказалось, что в итоге все счетоводы получили разные результаты. Какое наибольшее число счетоводов могло работать в фирме?
Задача
65724
(#5)
|
|
Сложность: 4- Классы: 10,11
|
На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
а) через какие-то 6 из отмеченных точек;
б) через какие-то 7 из отмеченных точек?
Страница: 1 [Всего задач: 5]