ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 65889  (#6.1)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 5,6

В каком году родился венгерский математик Пол Эрдёш, если последняя цифра этого года в 3 раза меньше второй цифры и в 3 раза больше третьей?

Прислать комментарий     Решение

Задача 65890  (#6.2)

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6

В тридевятом царстве работают два обменных пункта. В первом дают за рубль 3000 тугриков, но берут 7000 тугриков комиссии за совершение обмена, а во втором за рубль дают только 2950 тугриков, но комиссию не берут. Турист заметил, что ему все равно, в каком из этих пунктов менять деньги. Сколько рублей он собирается поменять?

Прислать комментарий     Решение

Задача 65891  (#6.3)

Темы:   [ Объединение, пересечение и разность множеств ]
[ Классическая комбинаторика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 3
Классы: 5,6

У каждого из тридцати шестиклассников есть одна ручка, один карандаш и одна линейка. После их участия в олимпиаде оказалось, что 26 учеников потеряли ручку, 23 – линейку и 21 – карандаш. Найдите наименьшее возможное количество шестиклассников, потерявших все три предмета.

Прислать комментарий     Решение

Задача 65892  (#6.4)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 5,6

На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)

Прислать комментарий     Решение

Задача 65893  (#6.5)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 5,6

Иван Царевич хочет выйти из круглой комнаты с шестью дверями, пять из которых заперты на ключ. За одну попытку он может проверить любые три двери, расположенные подряд, и если одна из них не заперта, то он в неё выйдет. После каждой попытки Баба-Яга запирает дверь, которая была открыта, и отпирает одну из соседних дверей. Какую именно, Иван Царевич не знает. Как ему действовать, чтобы наверняка выйти из комнаты?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .