ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В некоторых клетках квадрата 200×200 стоит по одной фишке – красной или синей; остальные клетки пусты. Одна фишка видит другую, если они находятся в одной строке или одном столбце. Известно, что каждая фишка видит ровно пять фишек другого цвета (и, возможно, некоторое количество фишек своего цвета). Найдите наибольшее возможное количество фишек. Решение |
Страница: << 1 2 [Всего задач: 8]
В некоторых клетках квадрата 200×200 стоит по одной фишке – красной или синей; остальные клетки пусты. Одна фишка видит другую, если они находятся в одной строке или одном столбце. Известно, что каждая фишка видит ровно пять фишек другого цвета (и, возможно, некоторое количество фишек своего цвета). Найдите наибольшее возможное количество фишек.
Изначально на доске написано натуральное число N. В любой момент Миша может выбрать число a > 1 на доске, стереть его и дописать все натуральные делители a, кроме него самого (на доске могут появляться одинаковые числа). Через некоторое время оказалось, что на доске написано N² чисел. При каких N это могло случиться?
Дан выпуклый четырёхугольник ABCD. Обозначим через IA, IB, IC и ID центры вписанных окружностей ωA, ωB, ωC и ωD треугольников DAB, ABC, BCD и CDA соответственно. Оказалось, что ∠BIAA + ∠ICIAID = 180°. Докажите, что ∠BIBA + ∠ICIBID = 180°.
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|