ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольный треугольник ABC вписана окружность с центром I, касающаяся сторон AB, BC и CA в точках D, E и F соответственно. В четырёхугольники ADIF и BDIE вписаны окружности с центрами J1 и J2 соответственно. Прямые J1J2 и AB пересекаются в точке M. Докажите. что  CDIM.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66214  (#11)

Темы:   [ Системы точек ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Вписанные и описанные окружности ]
[ Неравенства для углов треугольника ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,10,11

На плоскости отмечено несколько точек, причём не все эти точки лежат на одной прямой. Вокруг каждого треугольника с вершинами в отмеченных точках описана окружность. Могут ли центры всех этих окружностей оказаться отмеченными точками?

Прислать комментарий     Решение

Задача 66215  (#12)

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Радикальная ось ]
[ Теоремы Чевы и Менелая ]
[ Проективная геометрия (прочее) ]
Сложность: 5-
Классы: 9,10,11

AA1, BB1, CC1 – высоты треугольника ABC,  B0 – точка пересечения BB1 и описанной окружности Ω, Q – вторая точка пересечения Ω и описанной окружности ω треугольника A1C1B0. Докажите, что BQ – симедиана треугольника ABC.

Прислать комментарий     Решение

Задача 66216  (#13)

Темы:   [ Пересекающиеся окружности ]
[ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Угол между касательной и хордой ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 9,10

Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.

Прислать комментарий     Решение

Задача 66217  (#14)

Темы:   [ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9,10

На окружности радиуса R с диаметром AD и центром O выбраны точки B и С по одну сторону от этого диаметра. Около треугольников ABO и CDO описаны окружности, пересекающие отрезок BC в точках F и E. Докажите, что  AF·DE = R².

Прислать комментарий     Решение

Задача 66218  (#15)

Темы:   [ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 9,10,11

В остроугольный треугольник ABC вписана окружность с центром I, касающаяся сторон AB, BC и CA в точках D, E и F соответственно. В четырёхугольники ADIF и BDIE вписаны окружности с центрами J1 и J2 соответственно. Прямые J1J2 и AB пересекаются в точке M. Докажите. что  CDIM.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .