Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Задача
66219
(#16)
|
|
Сложность: 5- Классы: 9,10,11
|
Касательные к описанной окружности треугольника ABC в точках A и B пересекаются в точке D. Окружность, проходящая через проекции D на прямые BC, CA, AB, повторно пересекает AB в точке C'. Аналогично строятся точки A', B'. Докажите, что прямые AA', BB', CC' пересекаются в одной точке.
Задача
66220
(#17)
|
|
Сложность: 4 Классы: 9,10
|
Внутри остроугольного треугольника ABC постройте (с помощью циркуля и линейки) такую точку K, что ∠KBA = 2∠KAB и ∠KBC = 2∠KCB.
Задача
66221
(#18)
|
|
Сложность: 4- Классы: 9,10
|
Пусть L – точка пересечения симедиан остроугольного треугольника ABC, а BH – его высота. Известно, что ∠ALH = 180° – 2∠A.
Докажите, что ∠CLH = 180° – 2∠C.
Задача
66222
(#19)
|
|
Сложность: 4- Классы: 9,10
|
В треугольнике ABC провели чевианы AA', BB' и CC', которые пересекаются в точке P. Описанная окружность треугольника PA'B' пересекает прямые AC и BC в точках M и N соответственно, а описанные окружности треугольников PC'B' и PA'C' повторно пересекают AC и BC соответственно в точках K и L. Проведём через середины отрезков MN и KL прямую c. Прямые a и b определяются аналогично. Докажите, что прямые a, b и c пересекаются в одной точке.
Задача
66223
(#20)
|
|
Сложность: 4 Классы: 9,10,11
|
Даны прямоугольный треугольник ABC и две взаимно перпендикулярные прямые x и y, проходящие через вершину прямого угла A. Для точки X, движущейся по прямой x, определим yb как образ прямой y при симметрии относительно XB, а yc – как образ прямой y при симметрии относительно XC. Пусть yb и yс пересекаются в точке Y. Найдите геометрическое место точек Y (для несовпадающих yb и yс).
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]