ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Кусок сыра надо разрезать на части с соблюдением таких правил:
    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;
    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.
  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).
  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.
  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

Вниз   Решение


На одной из клеток поля 8×8 зарыт клад. Вы находитесь с металлоискателем в центре одной из угловых клеток этого поля и передвигаетесь, переходя в центры соседних по стороне клеток. Металлоискатель срабатывает, если вы оказались на той клетке, где зарыт клад, или в одной из соседних с ней по стороне клеток. Можно ли гарантированно указать клетку, где зарыт клад, пройдя расстояние не более 26?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 66323  (#1)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Имеется 5 ненулевых чисел. Для каждых двух из них вычислены их сумма и произведение. Оказалось, что пять сумм положительны и пять сумм отрицательны. Сколько произведений положительны и сколько – отрицательны?

Прислать комментарий     Решение

Задача 66324  (#2)

Тема:   [ Теория чисел. Делимость (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

Существуют ли такие 99 последовательных натуральных чисел, что наименьшее из них делится на 100, следующее делится на 99, третье делится на 98, ..., последнее делится на 2?

Прислать комментарий     Решение

Задача 66325  (#3)

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9,10,11

В ряд лежат 100 внешне одинаковых монет. Среди них ровно 26 фальшивых, причём они лежат подряд. Настоящие монеты весят одинаково, фальшивые – не обязательно одинаково, но они легче настоящих. Как за одно взвешивание на двухчашечных весах без гирь найти хотя бы одну фальшивую монету?

Прислать комментарий     Решение

Задача 66326  (#4)

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 7,8,9,10,11

На одной из клеток поля 8×8 зарыт клад. Вы находитесь с металлоискателем в центре одной из угловых клеток этого поля и передвигаетесь, переходя в центры соседних по стороне клеток. Металлоискатель срабатывает, если вы оказались на той клетке, где зарыт клад, или в одной из соседних с ней по стороне клеток. Можно ли гарантированно указать клетку, где зарыт клад, пройдя расстояние не более 26?

Прислать комментарий     Решение

Задача 66327  (#5)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 4-
Классы: 7,8,9,10,11

Окружность радиуса 1 нарисована на шахматной доске так, что целиком содержит внутри белую клетку (сторона клетки равна 1).
Докажите, что участки этой окружности, проходящие по белым клеткам, составляют суммарно не более трети её длины.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .