Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]
Задача
66468
(#3)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Внутри параллелограмма ABCD отмечена точка K. Точка M – середина BC, точка P – середина KM. Докажите, что если ∠APB = ∠CPD = 90°, то AK = DK.
Задача
66474
(#3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Докажите, что для любых натуральных a1, a2, ..., ak
таких, что , у уравнения
не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число,
не превосходящее x.)
Задача
66480
(#3)
|
|
Сложность: 3 Классы: 8,9,10,11
|
Точка $O$ — центр описанной окружности треугольника $ABC$, $AH$ — его высота. Точка $P$ — основание перпендикуляра, опущенного из точки $A$ на прямую $CO$. Докажите, что прямая $HP$ проходит через середину отрезка $AB$.
Задача
66486
(#3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существуют ли такое натуральное $n$ и такой многочлен $P(x)$ степени $n$, имеющий $n$ различных действительных корней, что при всех действительных $x$ выполнено равенство
а) $P(x)P(x+1)=P(x^2)$;
б) $P(x)P(x+1)=P(x^2+1)$?
Задача
66492
(#3)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть $x$ и $y$ — пятизначные числа, в
десятичной записи которых использованы все десять цифр ровно по одному
разу. Найдите наибольшее возможное значение $x$, если
$\operatorname{tg} x^\circ- \operatorname{tg} y^\circ=1+\operatorname{tg} x^\circ \operatorname{tg} y^\circ$ ($x^\circ$
обозначает угол в $x$ градусов).
Страница:
<< 1 2 3
4 5 6 >> [Всего задач: 29]