Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Задача
66928
(#16 [9-11 кл])
|
|
Сложность: 5 Классы: 9,10,11
|
В треугольнике $ABC$ чевианы $AP$ и $AQ$ симметричны относительно биссектрисы. Точки $X$, $Y$ – проекции $B$ на $AP$ и $AQ$ соответственно, а точки $N$ и $M$ – проекции $C$ на $AP$ и $AQ$ соответственно. Докажите, что $XM$ и $NY$ пересекаются на $BC$.
Задача
66929
(#17 [10-11 кл])
|
|
Сложность: 4+ Классы: 9,10,11
|
Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$.
Задача
66930
(#18 [10-11 кл])
|
|
Сложность: 4 Классы: 8,9,10,11
|
Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$.
Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников
$A_0IC_0$ и $ABC$ касаются.
Задача
66931
(#19 [10-11 кл])
|
|
Сложность: 4+ Классы: 9,10,11
|
В четырехугольнике $ABCD$ $AB\perp CD$ и $AD\perp BC$. Докажите, что существует точка, расстояния от которой до прямых, содержащих стороны четырехугольника, пропорциональны этим сторонам.
Задача
66932
(#20 [10-11 кл])
|
|
Сложность: 5- Классы: 9,10,11
|
К вписанной окружности треугольника $ABC$ проведена касательная, параллельная $BC$. Она пересекает внешнюю биссектрису угла $A$ в точке $X$. Точка $Y$ – середина дуги $BAC$ описанной окружности. Докажите, что угол $XIY$ прямой.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]