ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Agarwal P.

Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.

   Решение

Задачи

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 66950

Темы:   [ Вневписанные окружности ]
[ Проективные преобразования плоскости ]
[ Композиция преобразований плоскости ]
Сложность: 5
Классы: 9,10,11

Автор: Agarwal P.

Пусть $\gamma_A$, $\gamma_B$, $\gamma_C$ – вневписанные окружности треугольника $ABC$, касающиеся сторон $BC$, $CA$, $AB$ соответственно. Обозначим через $l_A$ общую внешнюю касательную окружностей $\gamma_B$ и $\gamma_C$, отличную от $BC$. Аналогично определим $l_B$, $l_C$. Из точки $P$, лежащей на $l_A$, проведем отличную от $l_A$ касательную к $\gamma_B$ и найдем точку $X$ ее пересечения с $l_C$. Аналогично найдем точку $Y$ пересечения касательной из $P$ к $\gamma_C$ с $l_B$. Докажите, что прямая $XY$ касается $\gamma_A$.
Прислать комментарий     Решение


Задача 66954

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Теорема Птолемея ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Пусть $AM$ – медиана неравнобедренного треугольника $ABC$, $T$ – точка касания вписанной окружности $\omega$ со стороной $BC$, $S$ – вторая точка пересечения $\omega$ с отрезком $AT$. Докажите, что вписанная окружность треугольника $\delta$, образованного прямыми $AM$, $BC$ и касательной к $\omega$ в точке $S$, касается описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66956

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 9,10,11

Автор: Белухов Н.

Отображение $f$ ставит в соответствие каждому невырожденному треугольнику на плоскости окружность ненулевого радиуса, причем выполняются следующие условия:

– Если произвольное подобие $\sigma$ переводит треугольник $\Delta_1$ в $\Delta_2$, то $\sigma$ переводит окружность $f(\Delta_1)$ в $f(\Delta_2)$.

– Для любых четырех точек общего положения $A$, $B$, $C$, $D$ окружности $f(ABC)$, $f(BCD)$, $f(CDA)$ и $f(DAB)$ имеют общую точку.

Докажите, что для любого треугольника $\Delta$ окружность $f(\Delta)$ совпадает с окружностью девяти точек треугольника $\Delta$ .

Прислать комментарий     Решение

Задача 66960

Темы:   [ Усеченная пирамида ]
[ Сферы (прочее) ]
[ Радикальная ось ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
[ Конус (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 5+
Классы: 10,11

В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .