ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 66970

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Площадь четырехугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9,10,11

Дан вписанный в окружность пятиугольник. Докажите, что отношение его площади к сумме диагоналей не превосходит четверти радиуса окружности.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .