ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67087

Темы:   [ Описанные четырехугольники ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9,10,11

Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника.
Прислать комментарий     Решение


Задача 67088

Темы:   [ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 7,8,9

В прямоугольном треугольнике $ABC$ с прямым углом $C$ проведена высота $CD$. На отрезках $AD$ и $CD$ построены равносторонние треугольники $AED$ и $CFD$, так что точка $E$ лежит в той же полуплоскости относительно прямой $AB$, что и $C$, а точка $F$ лежит в той же полуплоскости относительно прямой $CD$, что и $B$. Прямая $EF$ пересекает катет $AC$ в точке $L$. Докажите, что $FL=CL+LD$.
Прислать комментарий     Решение


Задача 67089

Темы:   [ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9,10

Пусть $AA_1$, $BB_1$, $CC_1$ – высоты остроугольного треугольника $ABC$; $A_2$ – точка касания вписанной окружности треугольника $AB_1C_1$ со стороной $B_1C_1$; аналогично определяются точки $B_2$, $C_2$. Докажите, что прямые $A_1A_2$, $B_1B_2$, $C_1C_2$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67090

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Признаки и свойства касательной ]
[ Угол между касательной и хордой ]
Сложность: 3
Классы: 8,9,10

Диагонали вписанного четырехугольника $ABCD$ пересекаются в точке $P$. Прямая, проходящая через точку $P$ и перпендикулярная $PD$, пересекает прямую $AD$ в точке $D_{1}$; аналогично определяется точка $A_{1}$. Докажите, что касательная, проведенная в точке $P$ к описанной окружности треугольника $D_{1}PA_{1}$, параллельна прямой $BC$.
Прислать комментарий     Решение


Задача 67091

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Ивлев Ф.

Вписанная и вневписанная окружности треугольника $ABC$ касаются отрезка $AC$ в точках $P$ и $Q$ соответственно. Прямые $BP$ и $BQ$ вторично пересекают описанную окружность треугольника $ABC$ в точках $P'$ и $Q'$ соответственно. Докажите, что $PP' > QQ'$.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .