ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Постройте треугольник ABC, зная три точки A', B', C', симметричные точке пересечения высот треугольника относительно сторон BC, CA, AB (оба треугольника остроугольные).

Вниз   Решение


Докажите неравенство для положительных значений переменных:
+ .

ВверхВниз   Решение


Назовём натуральное число хорошим, если в его десятичной записи есть только нули и единицы. Пусть произведение двух хороших чисел оказалось хорошим числом. Правда ли, что тогда сумма цифр произведения равна произведению сумм цифр сомножителей?

(В 44-м Турнире городов задача предлагалась в эквивалентной формулировке: хорошие числа были названы заурядными)

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



Задача 67154

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 7,8,9,10,11

Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?
Прислать комментарий     Решение


Задача 67159

Темы:   [ Квадратный трехчлен (прочее) ]
[ Квадратные уравнения. Теорема Виета ]
Сложность: 4
Классы: 8,9,10,11

Какой наибольший рациональный корень может иметь уравнение вида $aх^2 + bx + c = 0$, где $a$, $b$ и $c$ – натуральные числа, не превосходящие 100?
Прислать комментарий     Решение


Задача 67162

Темы:   [ Теория алгоритмов (прочее) ]
[ Обход графов ]
Сложность: 4
Классы: 8,9,10,11

В клетчатом квадрате между каждыми двумя соседними по стороне клетками есть закрытая дверь. Жук начинает с какой-то клетки и ходит по клеткам, проходя через двери. Закрытую дверь он открывает в ту сторону, в которую идёт, и оставляет дверь открытой. Через открытую дверь жук может пройти только в ту сторону, в которую дверь была открыта. Докажите, что если жук в какой-либо момент захочет вернуться в исходную клетку, то он сможет это сделать.
Прислать комментарий     Решение


Задача 67179

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4
Классы: 7,8,9

Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.
Прислать комментарий     Решение


Задача 67180

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 7,8,9

Назовём натуральное число хорошим, если в его десятичной записи есть только нули и единицы. Пусть произведение двух хороших чисел оказалось хорошим числом. Правда ли, что тогда сумма цифр произведения равна произведению сумм цифр сомножителей?

(В 44-м Турнире городов задача предлагалась в эквивалентной формулировке: хорошие числа были названы заурядными)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .