ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что для любого натурального n справедливо соотношение:

$\displaystyle {\frac{(2n)!}{n!}}$ = 2n . (2n - 1)!!

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 76522  (#1)

Темы:   [ Углы между прямыми и плоскостями ]
[ Задачи на максимум и минимум (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3+
Классы: 10,11

В пространстве даны две пересекающиеся плоскости $ \alpha$ и $ \beta$. На линии их пересечения дана точка A. Доказать, что из всех прямых, лежащих в плоскости $ \alpha$ и проходящих через точку A, наибольший угол с плоскостью $ \beta$ образует та, которая перпендикулярна к линии пересечения плоскостей $ \alpha$ и $ \beta$.
Прислать комментарий     Решение


Задача 76523  (#2)

Тема:   [ Угол (экстремальные свойства) ]
Сложность: 4
Классы: 10,11

Через точку A, лежащую внутри угла, проведена прямая, отсекающая от этого угла наименьший по площади треугольник. Доказать, что отрезок этой прямой, заключённый между сторонами угла, делится в точке A пополам.
Прислать комментарий     Решение


Задача 76524  (#3)

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Доказать, что  n² + 3n + 5  ни при каком целом n не делится на 121.

Прислать комментарий     Решение

Задача 76525  (#4)

Тема:   [ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 10,11

Доказать, что для любого натурального n справедливо соотношение:

$\displaystyle {\frac{(2n)!}{n!}}$ = 2n . (2n - 1)!!

Прислать комментарий     Решение

Задача 76526  (#5)

Тема:   [ Тригонометрические неравенства ]
Сложность: 4+
Классы: 10,11

Доказать, что если $ \alpha$ и $ \beta$ — острые углы и $ \alpha$ < $ \beta$, то

$\displaystyle {\frac{{\rm tg}\alpha}{\alpha}}$ < $\displaystyle {\frac{{\rm tg}\beta}{\beta}}$.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .