ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 77985

Темы:   [ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Многоугольники (прочее) ]
Сложность: 3
Классы: 9

На окружности даны точки A1, A2,..., A16. Построим все возможные выпуклые многоугольники, вершины которых находятся среди точек A1, A2,..., A16. Разобьём эти многоугольники на две группы. В первую группу будут входить все многоугольники, у которых A1 является вершиной. Во вторую группу входят все многоугольники, у которых A1 в число вершин не входит. В какой группе больше многоугольников?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .