ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Разрезать куб на три равные пирамиды.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



Задача 77991

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 77975

Темы:   [ Многочлены (прочее) ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Докажите, что многочлен вида  x200y200 + 1  нельзя представить в виде произведения многочленов от одного только x и одного только y.

Прислать комментарий     Решение

Задача 77978

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9

Доказать, что наибольший общий делитель суммы двух чисел и их наименьшего общего кратного равен наибольшему общему делителю самих чисел.

Прислать комментарий     Решение

Задача 77992

Темы:   [ Уравнения высших степеней (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 11

Найти корни уравнения   

Прислать комментарий     Решение

Задача 77972

Темы:   [ Квадратные корни (прочее) ]
[ Иррациональные неравенства ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 8,9,10

Доказать неравенство

$\displaystyle {\frac{2-\overbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}^{n{\rm раз}}}{2-\underbrace{\sqrt{2+\sqrt{2+\dots+\sqrt{2}}}}_{n-1{\rm раз}}}}$ > $\displaystyle {\textstyle\frac{1}{4}}$.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 27]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .