ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||
Страница: << 1 2 3 4 5 6 [Всего задач: 27]
В плоскости дан треугольник A1A2A3 и прямая l вне его, образующая с продолжением сторон треугольника A1A2, A2A3, A3A1 соответственно углы α3, α1, α2. Через точки A1, A2, A3 проводятся прямые, образующие с l соответственно углы π – α1, π – α2, π – α3. Доказать, что эти прямые пересекаются в одной точке. Все углы отсчитываются от прямой l в одном направлении.
S(a + b)(c + d ).
Страница: << 1 2 3 4 5 6 [Всего задач: 27] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|