ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сто положительных чисел C1, C2, ..., C100 удовлетворяют условиям  
Доказать, что среди них можно найти три числа, сумма которых больше 100.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 78019

Темы:   [ Принцип крайнего (прочее) ]
[ Обратный ход ]
[ Последовательности ]
Сложность: 4
Классы: 8,9,10

Если дан ряд из 15 чисел

a1, a2,..., a15, (1)

то можно написать второй ряд

b1, b2,..., b15, (2)

где bi(i = 1, 2, 3,..., 15) равно числу чисел ряда (1), меньших ai. Существует ли ряд чисел ai, если дан ряд чисел bi:

1, 0, 3, 6, 9, 4, 7, 2, 5, 8, 8, 5, 10, 13, 13?

Прислать комментарий     Решение

Задача 78018

Тема:   [ Системы алгебраических неравенств ]
Сложность: 4+
Классы: 9,10,11

Сто положительных чисел C1, C2, ..., C100 удовлетворяют условиям  
Доказать, что среди них можно найти три числа, сумма которых больше 100.

Прислать комментарий     Решение

Задача 78007

Темы:   [ Равногранный тетраэдр ]
[ Неравенства для остроугольных треугольников ]
Сложность: 5
Классы: 10,11

Существуют ли в пространстве четыре точки A, B, C, D такие, что AB = CD = 8 см, AC = BD = 10 см, AD = BC = 13 см?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .