Страница: 1
2 3 4 5 6 7 >> [Всего задач: 35]
|
|
Сложность: 2 Классы: 7,8,9,10
|
Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0,
1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл.
Сколько существует девятизначных чисел, которые при переворачивании листа не
изменяются?
Пусть
a и
b — целые числа. Напишем число
b справа от числа
a. Если
число
a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем
из него единицу, а потом разделим его на 2. Получившееся число
a1 напишем
под числом
a. Справа от числа
a1 напишем число 2
b. С числом
a1
проделаем ту же операцию, что и с числом
a, и, получив число
a2, напишем
его под числом
a1. Справа от числа
a2 напишем число 4
b и так далее.
Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1.
Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные
числа, равна произведению
ab.
|
|
Сложность: 2+ Классы: 9,10
|
Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами
емкостью
2 -
и
, перелить из одной в другую ровно 1 литр?
|
|
Сложность: 2+ Классы: 9,10
|
Дан выпуклый четырёхугольник
ABCD. Середины сторон
AB и
CD обозначим
соответственно через
K и
M, точку пересечения
AM и
DK — через
O,
точку пересечения
BM и
CK — через
P. Доказать, что площадь
четырёхугольника
MOKP равна сумме площадей треугольников
BPC и
AOD.
|
|
Сложность: 3- Классы: 10,11
|
Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что Pk·3–k < 2 для любого k.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 35]