ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что не существует таких натуральных чисел x, y, z, k, что  xk + yk = zk  при условии  x < k,  y < k.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 78184

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 10,11

В квадратную таблицу N×N записаны все целые числа по следующему закону: 1 стоит на любом месте, 2 стоит в строке с номером, равным номеру столбца, содержащего 1, 3 стоит в строке с номером, равным номеру столбца, содержащего 2, и так далее. На сколько сумма чисел в столбце, содержащем N², отличается от суммы чисел в строке, содержащей 1.

Прислать комментарий     Решение

Задача 78186

Темы:   [ Квадратные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Имеется два набора чисел  a1 > a2 > ... > an  и  b1 > b2 > ... > bn.  Доказать, что  a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 78181

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 3+
Классы: 10,11

Доказать, что не существует тетраэдра, в котором каждое ребро являлось бы стороной плоского тупого угла.
Прислать комментарий     Решение


Задача 78182

Темы:   [ Уравнения в целых числах ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

Доказать, что не существует таких натуральных чисел x, y, z, k, что  xk + yk = zk  при условии  x < k,  y < k.

Прислать комментарий     Решение

Задача 78183

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Тетраэдр и пирамида (прочее) ]
Сложность: 3+
Классы: 11

Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .