ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

k человек ехали в автобусе без кондуктора, и у всех них были монеты только достоинством в 10, 15, 20 копеек. Известно, что каждый уплатил за проезд и получил сдачу. Доказать, что наименьшее число монет, которое они могли иметь, равно k + $ \left[\vphantom{\frac{k+3}{4}}\right.$$ {\frac{k+3}{4}}$$ \left.\vphantom{\frac{k+3}{4}}\right]$, где значок [a] означает наибольшее целое число, не превосходящее a. Примечание. Проезд в автобусе стоит 5 копеек.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78251  (#1)

Темы:   [ Числа Фибоначчи ]
[ Индукция (прочее) ]
[ Деление с остатком ]
Сложность: 3+
Классы: 10,11

Дана последовательность чисел F1, F2, ...;  F1 = F2 = 1  и   Fn+2 = Fn + Fn+1.  Доказать, что F5k делится на 5 при  k = 1, 2, ... .

Прислать комментарий     Решение

Задача 78252  (#2)

Тема:   [ Многоугольники (экстремальные свойства) ]
Сложность: 4
Классы: 10,11

На плоскости проведено несколько полос разной ширины. Никакие две из них не параллельны. Как нужно сдвинуть их параллельно самим себе, чтобы площадь их общей части была наибольшей?
Прислать комментарий     Решение


Задача 78253  (#3)

Тема:   [ Обратный ход ]
Сложность: 4
Классы: 10,11

k человек ехали в автобусе без кондуктора, и у всех них были монеты только достоинством в 10, 15, 20 копеек. Известно, что каждый уплатил за проезд и получил сдачу. Доказать, что наименьшее число монет, которое они могли иметь, равно k + $ \left[\vphantom{\frac{k+3}{4}}\right.$$ {\frac{k+3}{4}}$$ \left.\vphantom{\frac{k+3}{4}}\right]$, где значок [a] означает наибольшее целое число, не превосходящее a. Примечание. Проезд в автобусе стоит 5 копеек.
Прислать комментарий     Решение


Задача 78254  (#4)

Темы:   [ ГМТ в пространстве (прочее) ]
[ Инверсия помогает решить задачу ]
[ Вписанный угол, опирающийся на диаметр ]
[ Конус (прочее) ]
Сложность: 5-
Классы: 10,11

Окружность S и точка O лежат в одной плоскости, причём O находится вне окружности. Построим произвольный шар, проходящий через окружность S, и опишем конус с вершиной в точке O и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров.
Прислать комментарий     Решение


Задача 78255  (#5)

Темы:   [ Векторы (прочее) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 3+
Классы: 11

Известно, что Z1 + ... + Zn = 0, где Zk — комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна 120o.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .