Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 37]
На отрезке AB выбрана произвольно точка C и на отрезках AB, AC и BC, как на диаметрах, построены окружности Ω1, Ω2 и Ω3. Через точку C проводится произвольная прямая, пересекающая окружность Ω1 в точках P и Q, а окружности Ω2 и Ω3 в точках R и S соответственно. Доказать, что PR = QS.
|
|
Сложность: 3+ Классы: 7,8,9
|
Последовательность a0, a1, a2, ... образована по закону: a0 = a1 = 1, an+1 = anan–1 + 1. Доказать, что число a1964 не делится на 4.
Найти все такие натуральные числа n, что число (n – 1)! не делится на n².
Рассмотрим суммы цифр всех чисел от 1 до 1000000 включительно. У полученных чисел вновь рассмотрим сумму цифр и так далее, пока не получим миллион однозначных чисел. Каких чисел больше среди них – единиц или двоек?
|
|
Сложность: 3+ Классы: 9,10,11
|
Решить в положительных числах систему:
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 37]