ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 78522

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что при любом целом  K ≠ 27  число  a – K³  делится на  27 – K. Найти a.

Прислать комментарий     Решение

Задача 78524

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Гомотетичные многоугольники ]
[ Симметрия помогает решить задачу ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9,10

В четырёхугольнике ABCD опущены перпендикуляры AM и CP на диагональ BD, а также BN и DQ на диагональ AC.
Доказать, что четырёхугольники ABCD и MNPQ подобны.

Прислать комментарий     Решение

Задача 78526

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

Прислать комментарий     Решение

Задача 78535

Темы:   [ Симметричная стратегия ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На квадратном поле размерами 99×99, разграфленном на клетки размерами 1×1, играют двое. Первый игрок ставит крестик на центр поля; вслед за этим второй игрок может поставить нолик на любую из восьми клеток, окружающих крестик первого игрока. После этого первый ставит крестиктна любое из полей рядом с уже занятыми и т.д. Первый игрок выигрывает, если ему удастся поставить крестик на любую угловую клетку. Доказать, что при любой игре второго игрока первый всегда может выиграть.
Прислать комментарий     Решение


Задача 78518

Тема:   [ Шестиугольники ]
Сложность: 3+
Классы: 8,9

В шестиугольнике ABCDEF все углы равны. Доказать, что длины сторон такого шестиугольника удовлетворяют соотношениям: a1 - a4 = a5 - a2 = a3 - a6.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .