ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

n точек расположены в вершинах выпуклого n-угольника. Внутри этого n-угольника отметили k точек. Оказалось, что любые три из n + k точек не лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему может быть равно число k?

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 17]      



Задача 78800

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 11

Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
A1 ≤ ... ≤ AnB1 ≥ ... ≥ Bn.  Доказать, что  max{a1 + b1, ..., an + bn} ≥ max{A1 + B1, ..., An + Bn}.

Прислать комментарий     Решение

Задача 55723

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на $90^\circ$ ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9,10

Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

Прислать комментарий     Решение


Задача 78782

Темы:   [ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10

n точек расположены в вершинах выпуклого n-угольника. Внутри этого n-угольника отметили k точек. Оказалось, что любые три из n + k точек не лежат на одной прямой и являются вершинами равнобедренного треугольника. Чему может быть равно число k?
Прислать комментарий     Решение


Задача 78802

Темы:   [ Ортогональная проекция (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 5-
Классы: 10,11

В пространстве даны точка O и n попарно непараллельных прямых. Точка O ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом?
Прислать комментарий     Решение


Задача 78796

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 5-
Классы: 8,9,10

Можно ли каждую сторону квадрата так разделить на 100 частей, чтобы из полученных 400 отрезков нельзя было бы составить контура никакого прямоугольника, отличного от исходного квадрата?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .