ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На квадратном клетчатом листе бумаги размером 100 * 100 клеток нарисовано несколько прямоугольников. Каждый прямоугольник состоит из целых клеток, различные прямоугольники не накладываются друг на друга и не соприкасаются (см. пример на рис.). Задан массив размером 100 * 100, в котором элемент А [i, j] = 1, если клетка [i, j] принадлежит какому - либо прямоугольнику, и А [i, j] = 0 в противном случае. Написать программу, которая сосчитает и напечатает число прямоугольников. ![]() ![]() В пространстве даны точка O и n попарно непараллельных прямых. Точка O ортогонально проектируется на все данные прямые. Каждая из получившихся точек снова проектируется на все данные прямые и т.д. Существует ли шар, содержащий все точки, которые могут быть получены таким образом? ![]() ![]() |
Страница: << 1 2 3 4 >> [Всего задач: 17]
Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.
Можно ли каждую сторону квадрата так разделить на 100 частей, чтобы из полученных 400 отрезков нельзя было бы составить контура никакого прямоугольника, отличного от исходного квадрата?
Страница: << 1 2 3 4 >> [Всего задач: 17] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |