ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей  K = p1p2...pn;  затем вычисляется сумма  p1 + p2 + ... + pn + 1.  С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79246  (#1)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Итерации ]
[ Индукция (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 4-
Классы: 9,10,11

С натуральным числом K производится следующая операция: оно представляется в виде произведения простых сомножителей  K = p1p2...pn;  затем вычисляется сумма  p1 + p2 + ... + pn + 1.  С полученным числом производится то же самое, и т.д.
Доказать, что образующаяся последовательность, начиная с некоторого номера, будет периодической.

Прислать комментарий     Решение

Задача 55131  (#2)

Темы:   [ Параллелограммы (прочее) ]
[ Отношение площадей треугольников с общим углом ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

На каждой стороне параллелограмма взято по точке. Площадь четырёхугольника с вершинами в этих точках равна половине площади параллелограмма. Докажите, что хотя бы одна из диагоналей четырёхугольника параллельна одной из сторон параллелограмма.

Прислать комментарий     Решение

Задача 79247  (#3)

Тема:   [ Теорема Безу. Разложение на множители ]
Сложность: 4
Классы: 10,11

Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3.
Доказать, что существует не более одного целого x, при котором значение этого многочлена равно 5.

Прислать комментарий     Решение

Задача 79248  (#4)

Темы:   [ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Многогранники и многоугольники (прочее) ]
[ Выпуклые тела ]
[ Наглядная геометрия в пространстве ]
Сложность: 3+
Классы: 9,10,11

Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .