Страница: 1 [Всего задач: 5]
Задача
79342
(#1)
|
|
Сложность: 3+ Классы: 10,11
|
В пространстве расположено
n отрезков, никакие три из которых не параллельны
одной плоскости. Для любых двух отрезков прямая, соединяющая их середины,
перпендикулярна обоим отрезкам. При каком наибольшем
n это возможно?
Задача
79343
(#2)
|
|
Сложность: 4 Классы: 8,9,10
|
Существуют ли а) 6, б)15, в) 1000 таких различных натуральных чисел, что для любых двух a и b из них сумма a + b делится на разность a − b?
Задача
79341
(#3)
|
|
Сложность: 4 Классы: 9
|
В волейбольном турнире каждые две команды сыграли по одному матчу.
а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
б) Постройте пример такого турнира семи команд.
в) Докажите, что если для любых трёх команд найдётся такая, которая
выиграла у этих трёх, то число команд не меньше 15.
Задача
79344
(#4)
|
|
Сложность: 3 Классы: 10,11
|
В пространстве расположен выпуклый многогранник, все вершины которого
находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет.
(Целой называется точка, все три координаты которой – целые числа.)
Доказать, что число вершин многогранника не превосходит восьми.
Задача
79345
(#5)
|
|
Сложность: 4 Классы: 10,11
|
Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство P(x) > x. Определим последовательность {bn} следующим образом: b1 = 1, bk+1 = P(bk) для k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что P(x) = x + 1.
Страница: 1 [Всего задач: 5]