Страница: 1
2 3 >> [Всего задач: 13]
В каждой вершине выпуклого
k-угольника находится охотник, вооруженный
лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке
O внутри этого
k-угольника. В момент выстрела заяц пригибается, и все
охотники погибают. Доказать, что нет другой точки, кроме
O, обладающей
указанным свойством.
|
|
Сложность: 3 Классы: 10,11
|
В пространстве расположен выпуклый многогранник, все вершины которого
находятся в целых точках. Других целых точек внутри, на гранях и на рёбрах нет.
(Целой называется точка, все три координаты которой – целые числа.)
Доказать, что число вершин многогранника не превосходит восьми.
|
|
Сложность: 3+ Классы: 10,11
|
Последовательность натуральных чисел {xn} строится по следующему правилу: x1 = 2, xn+1 = [1,5xn]. Доказать, что в последовательности {xn} бесконечно много
а) нечётных чисел;
б) чётных чисел.
|
|
Сложность: 3+ Классы: 6,7,8,9
|
Каждая точка числовой оси, координата которой – целое число, покрашена либо в красный, либо в синий цвет. Доказать, что найдётся цвет со следующим
свойством: для каждого натурального числа k имеется бесконечно много точек
этого цвета, координаты которых делятся на k.
Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной
1. Столбик – это три кубика, стоящих рядом вдоль одного направления:
ширины, длины или высоты. Может ли быть так, что в каждом столбике
а) нечётное количество белых кубиков?
б) нечётное количество чёрных кубиков?
Страница: 1
2 3 >> [Всего задач: 13]