ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79393  (#1)

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9

В пятиугольнике проведены все диагонали. Какие семь углов между двумя диагоналями или между диагоналями и сторонами надо отметить, чтобы из равенства этих углов друг другу следовало, что пятиугольник – правильный?

Прислать комментарий     Решение

Задача 79389  (#2)

Темы:   [ Десятичная система счисления ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9

Дано число, имеющее 13 разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Прислать комментарий     Решение

Задача 79391  (#4)

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Иррациональные уравнения ]
Сложность: 4-
Классы: 8,9,10

Дано число x, большее 1. Обязательно ли имеет место равенство

[$\displaystyle \sqrt{[\sqrt{x}]}$] = [$\displaystyle \sqrt{\sqrt{x}}$]?

Прислать комментарий     Решение

Задача 79394  (#5)

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9

Дано 10 натуральных чисел:  a1 < a2 < a3 < ... < a10.  Доказать, что их наименьшее общее кратное не меньше 10a1.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .