ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 116399  (#1)

Темы:   [ Процессы и операции ]
[ Теория алгоритмов ]
Сложность: 3
Классы: 10,11

100 пиратов сыграли в карты на золотой песок, а потом каждый посчитал, сколько он в сумме выиграл либо проиграл. У каждого проигравшего хватает золота, чтобы расплатиться. За одну операцию пират может либо раздать всем поровну золота, либо получить с каждого поровну золота. Докажите, что можно за несколько таких операций добиться того, чтобы каждый получил (в сумме) свой выигрыш либо выплатил проигрыш. (Разумеется, общая сумма выигрышей равна сумме проигрышей.)

Прислать комментарий     Решение

Задача 116400  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Преобразования плоскости (прочее) ]
[ Замощения костями домино и плитками ]
Сложность: 4-
Классы: 10,11

Из N прямоугольных плиток (возможно, неодинаковых) составлен прямоугольник с неравными сторонами. Докажите, что можно разрезать каждую плитку на две части так, чтобы из N частей можно было сложить квадрат, а из оставшихся N частей – прямоугольник.

Прислать комментарий     Решение

Задача 87082  (#3)

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Сфера, касающаяся ребер тетраэдра ]
[ Центр масс ]
[ Прямые и плоскости в пространстве (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 4-
Классы: 10,11

Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.

Прислать комментарий     Решение

Задача 116402  (#4)

Темы:   [ Произведения и факториалы ]
[ Индукция (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Многочлены (прочее) ]
[ Комплексные числа помогают решить задачу ]
[ Линейная и полилинейная алгебра ]
Сложность: 4+
Классы: 10,11

Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Докажите, что  [n + m]!  делится на произведение [n]!·[m]!.

Прислать комментарий     Решение

Задача 116403  (#5)

Темы:   [ Шестиугольники ]
[ Площадь треугольника (через высоту и основание) ]
[ Перегруппировка площадей ]
Сложность: 4+
Классы: 10,11

Автор: Белухов Н.

Даны треугольник XYZ и выпуклый шестиугольник ABCDEF. Стороны AB, CD и EF параллельны и равны соответственно сторонам XY, YZ и ZX. Докажите, что площадь треугольника с вершинами в серединах сторон BC, DE и FA не меньше площади треугольника XYZ.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .