ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
  а) Докажите, что если n делится на 3, то такая раскраска возможна.
  б) Докажите, что если если такая раскраска возможна, то n делится на 3.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 103856  (#1)

Темы:   [ Перебор случаев ]
[ Четность и нечетность ]
[ Доказательство от противного ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8

Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

Прислать комментарий     Решение

Задача 98468  (#2)

Темы:   [ Трапеции (прочее) ]
[ Площадь четырехугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В трапеции ABCD площади 1 основания BC и AD относятся как  1 : 2.  Пусть K – середина диагонали AC. Прямая DK пересекает сторону AB в точке L. Найдите площадь четырёхугольника BCKL.

Прислать комментарий     Решение

Задача 98469  (#3)

Темы:   [ Призма (прочее) ]
[ Раскраски ]
[ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
  а) Докажите, что если n делится на 3, то такая раскраска возможна.
  б) Докажите, что если если такая раскраска возможна, то n делится на 3.

Прислать комментарий     Решение

Задача 98470  (#4)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Простые числа и их свойства ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 10,11

Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .