ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны 7 прямых, никакие две из которых не параллельны. Доказать, что найдутся две из них, угол между которыми меньше 26°. ![]() ![]() У семи Чебурашек есть по два воздушных шарика: красный и жёлтый. ![]() ![]() ![]() Петя может располагать три отрезка в пространстве произвольным образом. После того как Петя расположит эти отрезки, Андрей пытается найти плоскость и спроектировать на нее отрезки так, чтобы проекции всех трех были равны. Всегда ли ему удастся это сделать, если: а) три отрезка имеют равные длины? б) длины двух отрезков равны между собой и не равны длине третьего? ![]() ![]() ![]() – У меня зазвонил телефон. ![]() ![]() ![]() Дан картонный прямоугольник со сторонами a см и b см, где b/2 < a < b. ![]() ![]() |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41]
Дан картонный прямоугольник со сторонами a см и b см, где b/2 < a < b.
В однокруговом турнире участвовали 15 команд.
Какое наибольшее число клеток доски 9×9 можно разрезать по обеим диагоналям, чтобы при этом доска не распалась на несколько частей?
Трапеция с основаниями AD и BC описана вокруг окружности, E – точка пересечения её диагоналей. Докажите, что угол AED не может быть острым.
В окружность вписан прямоугольный треугольник ABC с гипотенузой AB. Пусть K – середина дуги BC, не содержащей точку A, N – середина отрезка AC, M – точка пересечения луча KN с окружностью. В точках A и C проведены касательные к окружности, которые пересекаются в точке E. Докажите, что
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 41] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |