ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Назовём автобусный билет счастливым, если сумма цифр его номера делится на 7. Могут ли два билета подряд быть счастливыми?

Вниз   Решение


Покупатель взял у продавца товара на 10 р. и дал 25 р. У продавца не нашлось сдачи, и он разменял деньги у соседа. Когда они расплатились и покупатель ушёл, сосед обнаружил, что 25 р. фальшивые. Продавец вернул соседу 25 р. и задумался. Какой убыток понёс продавец?

ВверхВниз   Решение


Даны два выпуклых многоугольника A1A2A3A4...An и B1B2B3B4...Bn. Известно, что A1A2 = B1B2, A2A3 = B2B3,..., AnA1 = BnB1 и n - 3 угла одного многоугольника равны соответственным углам другого. Будут ли многоугольники равны?

ВверхВниз   Решение


Перечислить все последовательности длины n из чисел 1..k в таком порядке, чтобы каждая следующая отличалась от предыдущей в единственной цифре, причём не более, чем на 1.

ВверхВниз   Решение


Для заданных n и k ( k$ \le$n) перечислить все k-элементные подмножества множества {1..n}.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 23]      



Задача 98820  (#2.1.1)

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 2+

Напечатать все последовательности длины k из чисел 1..n.
Прислать комментарий     Решение


Задача 98824  (#2.2.1)

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3

Напечатать все перестановки чисел 1..n (то есть последовательности длины n, в которые каждое из этих чисел входит по одному разу).
Прислать комментарий     Решение


Задача 98825  (#2.3.1)

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3

Для заданных n и k ( k$ \le$n) перечислить все k-элементные подмножества множества {1..n}.
Прислать комментарий     Решение


Задача 98830  (#2.4.1)

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 3+

Перечислить все разбиения целого положительного числа n на целые положительные слагаемые (разбиения, отличающиеся лишь порядком слагаемых, считаются за одно). (Пример: n=4, разбиения 1+1+1+1, 2+1+1, 2+2, 3+14.)
Прислать комментарий     Решение


Задача 98834  (#2.5.1)

Тема:   [ Нерекурсивная генерация объектов ]
Сложность: 4

Перечислить все последовательности длины n из чисел 1..k в таком порядке, чтобы каждая следующая отличалась от предыдущей в единственной цифре, причём не более, чем на 1.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .