Страница:
<< 1 2 3 [Всего задач: 13]
Площадь треугольника
ABC равна 1. Пусть
A1,
B1,
C1 — середины сторон
BC,
CA,
AB соответственно. На отрезках
AB1,
CA1,
BC1 взяты точки
K,
L,
M соответственно.
Чему равна минимальная площадь общей части треугольников
KLM
и
A1B1C1?
|
|
Сложность: 5+ Классы: 8,9,10
|
Какую наименьшую ширину должна иметь бесконечная полоса бумаги,
из которой можно вырезать любой треугольник площадью 1?
|
|
Сложность: 5+ Классы: 9,10,11
|
Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что
bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).
Страница:
<< 1 2 3 [Всего задач: 13]