Страница:
<< 1 2 [Всего задач: 8]
Пусть
P - середина стороны
AB выпуклого четырехугольника
ABCD. Докажите, что если площадь треугольника
PDC равна половине
площади четырехугольника
ABCD, то стороны
BC и
AD параллельны.
В треугольнике
ABC проведены медианы
AF и
CE.
Докажите, что если
BAF =
BCE = 30
o, то треугольник
ABC правильный.
|
|
Сложность: 5+ Классы: 8,9,10
|
Даны выпуклый
n-угольник с попарно непараллельными сторонами и точка
O внутри его. Докажите, что через точку
O нельзя провести
более
n прямых, каждая из которых делит площадь
n-угольника пополам.
Страница:
<< 1 2 [Всего задач: 8]