Страница: 1 [Всего задач: 3]
Задача
32136
(#01)
|
|
Сложность: 2+ Классы: 7,8,9
|
На сторонах шестиугольника было записано шесть чисел, а в каждой вершине – число, равное сумме двух чисел на смежных с ней сторонах. Затем все числа на сторонах и одно число в вершине стерли. Можно ли восстановить число, стоявшее в вершине?
Задача
32137
(#02)
|
|
Сложность: 3+ Классы: 7,8,9
|
Вершины A, B, C треугольника соединены с точками A1, B1, C1, лежащими на противоположных сторонах (не в вершинах).
Могут ли середины отрезков AA1, BB1, CC1 лежать на одной прямой?
Задача
98188
(#03)
|
|
Сложность: 3+ Классы: 6,7,8
|
Три шахматиста A, B и C сыграли матч-турнир (каждый с каждым сыграл одинаковое число партий). Может ли случиться, что по числу очков A занял первое место, C – последнее, а по числу побед, наоборот, A занял последнее место, C – первое (за победу присуждается одно очко, за ничью – пол-очка)?
Страница: 1 [Всего задач: 3]