Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 185]
|
|
Сложность: 3 Классы: 9,10,11
|
Диагонали трапеции
ABCD перпендикулярны. Точка M – середина боковой стороны AB,
точка N симметрична центру описанной окружности треугольника ABD
относительно прямой AD. Докажите, что ∠CMN = 90°.
Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE.
Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).
Квадрат и прямоугольник одинакового периметра имеют общий
угол. Докажите, что точка пересечения диагоналей прямоугольника лежит на диагонали
квадрата.
|
|
Сложность: 3 Классы: 10,11
|
Трапеция ABCD и параллелограмм MBDK
расположены так, что стороны параллелограмма параллельны
диагоналям трапеции (см. рис.). Докажите, что площадь серой
части равна сумме площадей черных частей.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 185]