ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 73683

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Последовательность  x0, x1, x2, ...  определена следующими условиями:  x0 = 1,  x1 = λ,  для любого  n > 1  выполнено равенство

(α + β)nxn = αnxnx0 + αn–1βxn–1x1 + αn–2β2xn–2x2 + ... + βnx0xn.
Здесь α, β, λ – заданные положительные числа. Найдите xn и выясните, при каком n величина xn наибольшая.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .