ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 73750

Темы:   [ Процессы и операции ]
[ Раскраски ]
[ Итерации ]
[ Геометрия на клетчатой бумаге ]
[ Индукция в геометрии ]
Сложность: 7
Классы: 9,10,11

Автор: Тоом А.Л.

На бесконечном клетчатом листе белой бумаги n клеток закрашены в чёрный цвет. В моменты времени t = 1, 2, 3,... происходит одновременное перекрашивание всех клеток листа по следующему правилу: каждая клетка k приобретает тот цвет, который имело в предыдущий момент большинство из трёх клеток: самой клетки k и её соседей справа и сверху (если две или три из этих клеток были белыми, то k становится белой, если две или три из них были чёрными,— то чёрной).

а) Докажите, что через конечное время на листе не останется ни одной чёрной клетки.

б) Докажите, что чёрные клетки исчезнут не позже, чем в момент времени t = n.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .