Страница: 1 [Всего задач: 2]
Задача
97875
(#М938)
|
|
Сложность: 4- Классы: 8,9
|
Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через N – 1 секунду после ОМN–2 – OMN–1.
При каких N эти положения радиуса делят круг на N равных секторов?
а) Верно ли, что к числу таких N относятся все степени двойки?
б) Относятся ли к числу таких N какие-либо числа, не являющиеся
степенями двойки?
Задача
97868
(#М939)
|
|
Сложность: 4- Классы: 7,8,9,10
|
В таблицу 10×10 нужно записать в каком-то порядке цифры 0, 1, 2, 3, ..., 9 так, что каждая цифра встречалась бы 10 раз.
а) Можно ли это сделать так, чтобы в каждой строке и в каждом
столбце встречалось не более четырёх различных цифр?
б) Докажите, что найдётся строка или столбец, в которой (в котором) встречается не меньше четырёх различных чисел.
Страница: 1 [Всего задач: 2]