Страница:
<< 1 2 3
4 >> [Всего задач: 18]
|
|
Сложность: 4- Классы: 7,8,9
|
Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто
одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно
делится на другое.
Дан выпуклый пятиугольник
ABCDE. Сторонами, противоположными вершинам
A,
B,
C,
D,
E, мы называем соответственно отрезки
CD,
DE,
EA,
AB,
BC. Докажите, что если произвольную точку
M,
лежащую внутри пятиугольника, соединить прямыми со всеми его вершинами, то из
этих прямых либо ровно одна, либо ровно три, либо ровно пять пересекают стороны
пятиугольника, противоположные вершинам, через которые они проходят.
|
|
Сложность: 4+ Классы: 8,9,10
|
Из двухсот чисел: 1, 2, 3, ..., 199, 200 выбрали одно число, меньшее 16, и ещё 99 чисел.
Докажите, что среди выбранных чисел найдeтся два таких, одно из которых делится на другое.
|
|
Сложность: 4+ Классы: 10,11
|
Внутри квадрата
A1A2A3A4 лежит выпуклый четырёхугольник
A5A6A7A8.
Внутри
A5A6A7A8 выбрана точка
A9. Никакие три из этих девяти точек не лежат на одной прямой. Докажите, что
можно выбрать из них 5 точек, расположенных в вершинах выпуклого пятиугольника.
Некоторые из 20 металлических кубиков, одинаковых по размерам и внешнему виду,
алюминиевые, остальные (Предполагается, что все кубики могут быть
алюминиевыми, но они не могут быть все дюралевыми (если все кубики окажутся
одного веса, то нельзя выяснить, алюминиевые они или дюралевые) — прим.
ред.) дюралевые (более тяжёлые). Как при помощи 11 взвешиваний на весах с 2-мя
чашечками без гирь определить число дюралевых кубиков?
Страница:
<< 1 2 3
4 >> [Всего задач: 18]